Repetitive activation of the corticospinal pathway by means of rTMS may reduce the efficiency of corticomotoneuronal synapses.

نویسندگان

  • Wolfgang Taube
  • Christian Leukel
  • Jens Bo Nielsen
  • Jesper Lundbye-Jensen
چکیده

Low-frequency rTMS applied to the primary motor cortex (M1) may produce depression of motor-evoked potentials (MEPs). This depression is commonly assumed to reflect changes in cortical circuits. However, little is known about rTMS-induced effects on subcortical circuits. Therefore, the present study aimed to clarify whether rTMS influences corticospinal transmission by altering the efficiency of corticomotoneuronal (CM) synapses. The corticospinal transmission to soleus α-motoneurons was evaluated through conditioning of the soleus H-reflex by magnetic stimulation of either M1 (M1-conditioning) or the cervicomedullary junction (CMS-conditioning). The first facilitation of the H-reflex (early facilitation) was determined after M1- and CMS-conditioning. Comparison of the early facilitation before and after 20-min low-frequency (1 Hz) rTMS revealed suppression with M1- (-17 ± 4%; P = 0.001) and CMS-conditioning (-6 ± 2%; P = 0.04). The same rTMS protocol caused a significant depression of compound MEPs, whereas amplitudes of H-reflex and M-wave remained unaffected, indicating a steady level of motoneuronal excitability. Thus, the effects of rTMS are likely to occur at a premotoneuronal site-either at M1 and/or the CM synapse. As the early facilitation reflects activation of direct CM projections, the most likely site of action is the synapse of the CM neurons onto spinal motoneurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-invasive Assessment of Changes in Corticomotoneuronal Transmission in Humans.

The corticospinal pathway is the major pathway connecting the brain with the muscles and is therefore highly relevant for movement control and motor learning. There exists a number of noninvasive electrophysiological methods investigating the excitability and plasticity of this pathway. However, most methods are based on quantification of compound potentials and neglect that the corticospinal p...

متن کامل

Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex.

Recent experimental work in animals has emphasized the importance of homeostatic plasticity as a means of stabilizing the properties of neuronal circuits. Here, we report a phenomenon that indicates a homeostatic pattern of cortical plasticity in healthy human subjects. The experiments combined two techniques that can produce long-term effects on the excitability of corticospinal output neurons...

متن کامل

تأثیر تحریک مکرر مغناطیسی فراقشری با فرکانس بالا در کاهش فعالیت سیستم فعال ساز رفتاری افراد سوء مصرف کننده مت آمفتامین

Objective: The present study was an attempt to examine the effect of repetitive Transcranial magnetic stimulation (rTMS) on the reduction of Behavioral Activation System's activity in right and left dorsolateral prefrontal cortex among methamphetamine abusers. Method: In the present study, single subject and multiple baseline research designs were used and repeated measurements observations wer...

متن کامل

Effect of different frequencies of repetitive transcranial magnetic stimulation (rTMS) on acquisition of chemical kindling seizures in rats

IIntroduction: Repetitive transcranial magnetic stimulation (rTMS) modulates the excitability of cortical neural networks. The effect of rTMS on excitability of cortical networks depends on its frequency. According to the previous reports, a distinction is made between low (<1Hz) and high frequencies of rTMS. Low frequencies of rTMS inhibit seizure but high frequencies increase it. In the curre...

متن کامل

The Neuroprotective Effects of Long-Term Repetitive Transcranial Magnetic Stimulation on the Cortical Spreading Depression-induced Damages in Rat’s Brain

Introduction: Cortical Spreading Depression (CSD) is a propagating wave of neural and glial cell depolarization with important role in several clinical disorders. Repetitive Transcranial Magnetic Stimulation (rTMS) is a potential tool with preventive treatment effects in psychiatric and neuronal disorders. In this paper, we study the effects of rTMS on CSD by using behavioral and histological a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cerebral cortex

دوره 25 6  شماره 

صفحات  -

تاریخ انتشار 2015